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A B S T R A C T   

The deadly threat that landslide has brought about is drawing more and more attention to analyze the mecha-
nisms of landslides and the relationship between landslides and climate change. Due to the limited record of 
historical landslides in developing countries, relevant research is mostly conducted in developed countries. 
Owing to the publicly available global long time-series Landsat images, such unbalance can be avoided by 
proposing a practical landslide detection model, especially in terms of national scale. This paper takes the 
advantage of google earth engine platform to synthesize the annual Landsat images covering the national scale of 
Nepal into one image and builds an end-to-end contour-based landslide detection deep learning framework. The 
framework consists of two parts, one is potential landslide detection using vegetation index and degradation of 
DEM, the other is exact landslide detection using semantic segmentation deep learning model based on the 
contour regions extracted from the detected potential landslide. The proposed method is applied to detect 
landslides of Nepal in the year of 2015 and achieves a satisfactory performance with 65% recall and 55.35% 
precision. The performance is 44% higher accurate than similarly published works, validating its promising 
applicability in practical landslide detection for national cases.   

1. Introduction 

Landslides, known as one of the top natural hazards in triggering 
human deaths globally (Tien Bui et al., 2018), are driving calls to better 
understand mechanisms of geomorphological hazards and exploring 
their risk relationships with other hazard chains, such as earthquake 
(Keefer, 2002) and rainstorm (Gariano et al., 2015). Apart from that, 
there is research claiming that climate change is influencing the fre-
quency of landslides with its variations of precipitation and temperature 
(Crozier, 2010; Dhakal and Sidle, 2004; Sidle and Ochiai, 2006). 
Landslides can occur in the global continents (Gariano and Guzzetti, 
2016), but the research in exploring the mechanisms of landslides and 
the role that landslides play in the hazard chains is mostly conducted in 
developed countries that have detailed records of historical landslides 
with location, magnitude and type (Gariano and Guzzetti, 2016; Guz-
zetti et al., 1999). The lack of landslide records in Asia, South America 

and Africa triggers the imbalanced quantity of research, and forms a gap 
in the geographical understanding about landslides compared with 
developed countries. Such gap hinders further analysis of landslides in 
large scale. There is great need to propose a practical method to detect 
massive landslides from large-scale area for multiple years, not only to 
fill up the gaps, but also to monitor and understand landslides deeply. 

Landslide records are mostly collected by field investigation (Cro-
velli, 2000). It is believed to be the most reliable method, but highly 
limited by the locations and geological scale of the study area. The 
advent of remote sensed technology makes it possible to visualize earth 
continuously at different spatial resolutions. Visual interpretation from 
the remote sensed images is dominating in preparing landslide inventory 
maps (Xu, 2015), but it is time-consuming and manpower wasting, 
especially for the large-scale area. By incorporating advanced image 
processing technologies in computer vision and machine learning, the 
methods in landslide mapping can generally be grouped into two 
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groups, one is object-based, and the other is pixel-based. 
Object-based landslide mapping groups pixels with similar spectral 

or textural features into one object and sets thresholds to classify each 
object to be landslide or not. It assigns semantic meaning for each object 
but requires many user-determined thresholds. Pixel-based landslide 
mapping examines each pixel in the image and determines whether it is 
landslide or not. It mostly adopts change detection strategy by quanti-
fying vegetation change over time through surface reflectance (Hervas 
et al., 2003) and band ratio (Cheng et al., 2004). Some researchers also 
apply image processing techniques, such as image enhancement (Nichol 
and Wong, 2005) and image correlation (Lucieer et al., 2014). However, 
change detection requires much image pre-procession of radiation 
correction and geometric correction. There is numerous research about 
landslide mapping based on post-event image, which aims to build 
automatic detection models using machine learning framework, such as 
support vector machine (SVM) (Cheng et al., 2013) and maximum 
likelihood (Parker et al., 2011). The published studies are mostly con-
ducted in local area using high spatial resolution images, which cover 
limited landslide events (a few hundred) with relative pure background 
objects, such as vegetation only (Li et al., 2016). Moreover, the study 
cases are simpler than practical applications, especially for large scale 
implementation (Cheng et al., 2013; Li et al., 2016). There is another 
thing to point out that the published models require a balanced distri-
bution of training data for each category (Cheng et al., 2013; Parker 
et al., 2011). That is very difficult to meet in large-scale study area with 
complicated background objects, such as national scale, because land-
slide is a kind of natural hazard, the quantity of landslide pixels is scarce 
compared with other background objects, such as vegetation, urban area 
and water. The extremely imbalanced data distribution hinders the 
novelty of pixel-based model for large-scale study. 

Contour-based method provides a practical way to deal with the 
imbalanced data distribution issue (Chen et al., 2018). Through image 
enhancement and slope calculation, most background objects are 
removed, and multiple regions with potential landslides (mixed with 
bare soil & rocks) are obtained. Based on the regions, 
connective-contours are generated and the corresponding spectral and 
textural features are calculated to build the exact landslide detection 
model. However, the features used for building landslide detection 
model are all manually designed, which heavily rely on the research 
experience and consume much work in feature engineering. That can be 
avoided with the help of deep learning framework (LeCun et al., 2015) 
by learning features automatically through convolution operations. 

Deep learning has gained the state-of-the-art performances in com-
puter vision, such as semantic segmentation (Noh et al., 2015), object 
detection (Ren et al., 2015) and image classification (Chan et al., 2015). 
Semantic segmentation is effective to segment multiple objects simul-
taneously by assigning each pixel in the image a label and has achieved 
remarkable performance with the continuously developed architecture, 
such as fully connected network (FCN) and the pyramid scene parsing 
network (PSPNet). 

In this paper, we are aiming to propose a practical end-to-end 
framework to detect landslides of Nepal and evaluate the model in 
year of 2015. The framework is a contour-based semantic segmentation 
deep learning model, modified from PSPNet, as done in (Yu et al., 2018). 
PSPNet is widely used in applications where samples are mostly 
balanced distributed, but landslides in our case are extremely unbal-
anced distributed, because landslide is a natural hazard, and the number 
of landslide samples is severely lower than that of other ground objects. 
Therefore, we propose a contour-based version of PSPNet to deal with 
the sample imbalanced issue. It mainly comprises of two parts, potential 
landslide detection and contour-based deep learning landslide detection 
model built up. The contour-based detection model is also different from 
the published works (Chen et al., 2018) in that our model is an 
end-to-end deep learning workflow, which overcomes the shortage of 
feature engineering as done in (Chen et al., 2018). 

The introductions of our study area and data preparation are in 

Section 2, and the detailed description of landslide detection model is 
demonstrated in Section 3. Section 4 shows the detection results and 
discussions. Final conclusions are drawn in Section 5. The main contri-
butions of our manuscript are as follows:  

1) Resist the imbalanced distribution of landslides using contour-based 
method  

2) Avoid feature engineering by applying deep learning framework  
3) Enlarge the practical applicability by evaluation in Nepal. 

2. Study area and data preparation 

2.1. Study area 

With the help of ArcMap 10.1 (Kneissl et al., 2011), our study area is 
demonstrated in Fig. 1. It covers Nepal and mainly locates in Himalayas 
towards the collision boundary between Indian Plate and the Eurasian 
Plate (Amos, 2015). Such collision makes Nepal vulnerable to earth-
quakes. Frequent earthquakes, deforestation and heavy monsoon rains 
are raising more and more landslides. The ground objects inNepal are 
very complicated, comprising vegetation, rocks, bare soil, urban area 
and river. The complexity and national-scale area can be used to eval-
uate the robustness of the proposed landslide detection model reliably. 
Since Gorkha earthquake in year of 2015 has raised thousands of land-
slides and lead to tremendous fortune loss (Chen et al., 2018), we take 
national scale of Nepal in 2015 as study area to assess the efficiency of 
our model. 

2.2. Data preparation 

In order to conduct landslide detection from national scale, we 
generated the annual Landsat image to explore the detailed spectral and 
textural characteristics of various ground objects and collected the 
corresponding DEM to supplement detection by providing the spatial 
patterns of our study area. 

2.2.1. Annual Landsat image of study area 
Landsat images (NASA, 2018) are playing a dominant role in sup-

porting research in natural resources management (MacAlister and 
Mahaxay, 2009), such as forest cover change (Hansen et al., 2013) and 
land cover change (Hansen and Loveland, 2012) at continental or global 
scale by providing the longest record of earth from 1972 to present. The 
Landsat program has launched eight satellites, and seven satellites 
succeeded to acquire images. The program collects mid-resolution 
global optical images with multiple spectral bands at a temporal reso-
lution of 16 days, and the amount of total images covering the national 
scale of Nepal throughout a year reaches 274 scenes. To construct a 
continuous annual landslide detection model, we applied google earth 
engine (Gorelick et al., 2017) platform to synthesize all the annual 
scenes covering Nepal into one image. Google earth engine is a 
planetary-scale geospatial processing platform, comprising publicly 
available remote sensed datasets, powerful computing resources, APIs in 
JavaScript and Python for setting commands to the Earth Engine servers. 
It provides an online Integrated Development Environment for editing 
code and visualizing the complicated spatial analysis. 

Google earth engine is integrated with multiple image pre-processing 
functions, including image mosaic, image composition and cloud 
removement. The cloud mask is built by Fmask (Zhu et al., 2015), which 
works robustly well. In terms of image composition of the same location 
throughout the annual images, we calculated NDVI (normalized differ-
ence vegetation index) and ranked the NDVI value for each pixel. The 
intensity of each pixel is determined to be the value of pixel whose NDVI 
ranks the top 80% of all the values in the pixel location throughout the 
year. We selected pixel with top 80% NDVI to resist band noise and 
maintain vegetation information, since landslides mostly occur in the 
background of vegetations. Such strategy can also overcome the 
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seasonability of vegetation, since it is a synthesis of the annual pixels. 
There is another point that the spectral band sequence in Landsat 8 is 

different from that in Landsat1-5 and Landsat 7. As shown in Table 1, 
Band 2–7 of Landsat 8 correspond to Band 1–5 and 7 of Landsat 1–5 and 
7 respectively. Therefore, the synthesized annual Landsat image is 
composited using the corresponding bands among them. According to 
the image composition rule, the annual Landsat image covering Nepal in 
year of 2015 were produced. 

2.2.2. Elevation gradient of study area 
Elevation gradient is essential in supplementing landslide detection 

by providing landscape pattern, because most landslides are likely to 
occur in slope areas. We calculated the elevation gradient from 1 arc- 
second global DEM (Digital elevation model) product of SRTM (shuttle 
radar topography mission) using the Sobel filter (Aqrawi and Boe, 
2011). It is designed to achieve the first-order gradient of an image in 
both horizontal and vertical directions. The calculated elevation 
gradient of our study area was resized to the same size as the synthesized 
annual Landsat product by bilinear interpretation (Arif and Akbar, 
2005). 

3. Landslide detection framework 

A general demonstration of our landslide detection framework is 
shown in Fig. 2. It mainly consists of two components, one is to detect 
potential landslide and the other is to detect landslides based on deep 
learning framework. Detailed descriptions of each component are given 
below. 

3.1. Potential landslide detection 

Potential landslide detection is specifically significant in building 
landslide detection model, because landslide is a sort of nature hazard 
that the number of its sample pixels are quite limited and recognized as 
scarce compared with other background objects, such as vegetation and 
bare soil. The landslides we aim to detect in this study mainly occur in 
mountainous area with a size of larger than 450 m2 (5 pixels in the 
Landsat image with 30 m resolution) in the background of vegetation. 
They are commonly mixed with bare soil or rocks. It is difficult to detect 
exact landslides directly. Threfore, detecting potential landslide (land-
slide pixels mixed with bare soil & rocks) is an efficient method to 
reduce the amount of background object samples (including roads, 
rivers, constructions, vegetation and so on) to a large extent and balance 
the sample distributions from different object categories. 

Potential landslide is detected by calculating inverse of EVI 
(enhanced vegetation index) to enhance the spectral characteristics of 
non-vegetation ground objects, including landslides. The calculation of 
inverse of EVI is conducted according to equation (2) and the definition 
of EVI is proposed in (Zheng et al., 2016). 

Fig. 1. Demonstration of study area.  

Table 1 
Corresponding band between Landsat 8 and Landsat 
1–5,7 in image composition.  

Landsat 1–5,7 Landsat 8 

Band 1 Band 2 
Band 2 Band 3 
Band 3 Band 4 
Band 4 Band 5 
Band 5 Band 6 
Band 7 Band 7  

Fig. 2. Landslide detection framework.  
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EVI¼ 2:5�
B5 � B4

B5þ 2:4� B4þ 1
(1)  

EVIn¼
EVImax � EVI

EVImax � EVImin
(2) 

Before rescaling the intensity values of image EVIn to 0–255, we 
remove the pixels with intensity value of smaller than 80 in DEM 
gradient image, which are recognized as flat areas, by assigning their 
intensity as 0 in the image EVIn. After rescaling EVIn, the pixels whose 
intensity values are greater than 180 are extracted as potential land-
slides. The threshold 180 is determined by trial and error. It can easily 
distinguish between background vegetation and bare soil, rocks and 
landslides in the reversed vegetation index image. However, bare soil, 
rocks and landslides are mixed together in the detected potential land-
slides due to similar spectral characteristics in EVIn (as shown in Fig. 3). 
A build stronger model is required to detect landslides exactly. 

3.2. Contour-based landslide detection deep learning model set-up 

Based on the potential landslide detection image, we calculated 
connective contour according to the algorithm proposed in (Korfiatis 
et al., 2017). It starts from a foreground pixel and keeps tracking the 
foreground pixels until the contour is fully closed. Based on each con-
nective contour, we calculated a bounding box and extended the 
bounding box to cover more landslides and background objects relying 
on its area size. If the area of a bounding box is smaller than 300 � 300, 
the bounding box is extended to 300 � 300, as demonstrated in the 
yellow dotted box in Fig. 4. In this way, each small bounding box is 
extended to cover more ground objects, which are highly possible to be 
landslides. Since the quantity of landslide samples is limited compared 
with other background objects, the bounding box extension can enlarge 
the variability of training dataset. Such strategy is different from the one 
proposed in (Yu et al., 2018), whose bounding box region subtracted 
was directly used for classification model set-up, without any spatial 
extension. The classification model in (Yu et al., 2018) is aimed to 
classify each connected contour in the bounding box to comprise land-
slide or not, while the proposed model in our paper is trying to segment 
landslides from the subtracted bounding box region at pixel-level. The 
proposed model in this paper is more accurate at pixel-level, because the 
connective contour classified in (Yu et al., 2018) may comprise many 
other false alarm pixels, including bare soil and rocks, which are mixed 
with landslide pixels in the process of contour generation. 

On top of the subtracted bounding box region in our proposed 
method, the corresponding region from prepared annual 6-channel 
Landsat image is extracted, which is used as input image to build the 
semantic segmentation landslide detection model. The general frame-
work of the deep learning model is shown in Fig. 5. It mainly stems from 
the structure proposed in (Zhao et al., 2017) and consists of two com-
ponents, one is ResNet-101, the other is pyramid pooling module. 
ResNet-101 (He et al., 2016) is a typical convolutional neural network 
with residual structure of 101 layers. It is aimed to extract features and 
encodes input image into feature map (shown in Fig. 4). By importing 
shortcut connection to skip one or more neural network layers, the re-
sidual structure is introduced to solve accuracy saturation issue, which is 
raised by continuously increasing network layers but the accuracy de-
grades. Importing shortcut connection enables the optimization of 
weights of network layers to approximate shortcut connection, thus 
simplifying model training. We applied RestNet-101-v2 (Szegedy et al., 
2017) in our proposed framework, because it is cheaper in computation 
(Szegedy et al., 2017), easy to implement and achieves promising 
recognition accuracy in the ImageNet dataset (Deng et al., 2009). 

Pyramid pooling module in the landslide detection framework is 
applied to extract local features at multiple scales and concatenate with 
the input feature map \ for final segmentation result calculation. The 
pyramid pooling module consists of four components, pyramid pooling 

in multiple scales, convolution to reduce the channel of feature maps, 
upsample the convoluted features to be the same size with input feature 
map and concatenate the multi-scale features with the input feature 
map. The pyramid pooling kernel sizes are M_size, M_size/2, M_size/3 and 
M_size/6, wherein M_size indicates the size of input feature map. The 
pooling strategy is average pooling, following the works in (Zhao et al., 
2017). Moreover, two auxiliary losses are added to the 3rd and 29th 
residual network blocks to supplement and accelerate the whole model 
to optimize. 

In terms of training the whole landslide detection framework, the 
widely used ReLU (rectified linear unit) (Nair and Hinton, 2010) active 
function is applied to our case and poly learning strategy (Chen et al., 
2016) is adopted to learn the weights and bias in the network layers. The 
learning rate is set according to equation (3), wherein lr base is the 
initialized learning rate, determined to be 0.001. ti is the ith time of 
iteration and tmax is the maximum times of iteration, set as 200k. P is 
the power exponent, as 0.9. The experiments are implemented on the 
platform of Caffe2 (Jia et al., 2014) with 2 GPUs. They are both graphics 
cards of NVIDIA TITAN X with a memory of 12 GB each. The detailed 
code can be referred to from website.3 

lrti¼ lr base�
�

1 �
ti

tmax

�p

(3)  

4. Detection results and discussions 

To evaluate the efficiency and robustness of the proposed landslide 
detection model, we applied it to detect landslides of national scale of 
Nepal in year 2015. In terms of training the deep learning framework, 
we collected the ground truth landslide pixels of Nepal in year of 2014. 
To balance the sample distribution between landslide and non-landslide 
ground objects, we cropped bounding box regions from potential land-
slide image produced in Section 3.1. The corresponding Landsat image 
patches in year of 2014 are used for training the deep learning semantic 
segmentation model for landslide detection. The annual Landsat image 
in year of 2015 is used for model evaluation. Moreover, the ground truth 
landslide samples of year 2014 and 2015 are achieved by visual inter-
pretation with the help of google earth and the publicly released lines by 
international cooperation among five organizations (University, 2015). 
In our visual interpretation, two experienced individuals conducted 
double check for each other to guarantee the accuracy. We calculate 
recall, precision and F1-score to analyze the performance objectively, in 
both terms of regional case and national case. Precision, recall and 
F1-score are widely used measurements in evaluating the performance 
of object detection (Sujatha and Selvathi, 2015). Precision indicates the 
percentage of pixels that are correctly detected as category A of all the 
pixels detected as A. Recall stands for the percentage of pixels that are 
correctly detected as category A of all the ground truth pixels belonging 
to A.. F1-score is a synthesized measurement of recall and precision to 
evaluate detection performance generally. 

We performed landslide detection for Nepal on the same GPUs used 
for model training and consumed 160 min to finish the entire detection 
on the image with a size of 31913 � 17111 pixels. The corresponding 
visual detection performances are shown in Fig. 6. Generally, most 
ground truth landslide clusters have been detected, especially the major 
clusters in blue box. The shapes of the clusters have been well main-
tained, and substantial background objects have been removed. There 
are 2761 landslide event polygons in our ground truth image and 1965 
landslide event polygons in our detection result. It indicates that our 
detection framework is performing reasonably well in general. We also 
calculated the precision, recall and F1-score to evaluate the pixel-level 

2 Available: http://caffe.berkeleyvision.org.  
3 https://github.com/yubozuzu123/Landslide-detection-model_pspnet/tr 

ee/master. 
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landslide detection performance objectively, as listed in Table 2. 
Compared with the work in (Chen et al., 2018), which detects landslides 
in terms of national scale of Nepal using contour-based random forest 
model, our detection framework improves the detection accuracy by 
44% in recall and 15% in precision. That indicates that the proposed 
deep learning framework is able to correctly locate far more ground 
truth landslides than the typical machine learning method. The number 
of more detected ground truth landslides reaches almost half of the all 
the ground truth landslides of national scale of Nepal. Such improve-
ment stems from the automatic multi scale feature learning in the pro-
posed deep learning framework without the reliability of feature 
engineering in machine learning method. Moreover, the pixels recog-
nized as landslides are 55.35% accurate, 15% higher than the random 

forest method, which further validate the strong applicability of the 
proposed landslide detection framework in distinguishing bare soil, rock 
and landslide. 

However, due to the limit of page size, it is difficult to visualize the 
landslide detection performance in terms of national scale in details in 
Fig. 6. We sampled four sub-regions with landslides and performed 
statistical evaluation. The detection performances are visually demon-
strated in Fig. 7 and the corresponding evaluation statistics of precision, 
recall and F1-score are listed Table 3. From Fig. 7, we can clearly 
recognize that most landslides have been neatly and completely 
extracted. The bare soil, which takes similar spectral and textural 
characteristics, is mostly removed, as shown in the yellow circles in 
Fig. 7(a), (b) and (c). The statistics in Table 3 further validate the strong 
practical applicability of our proposed deep learning framework in 
detecting landslides for national scale area. F1-score is a synthesized 
measurement of detection performance, and it reaches higher than 0.7 
of all the four sub regions. For cases of Fig. 7(a) and (b), whose land-
slides are densely distributed among massive bare soil as background 
objects, the precision gets higher than 64% in both cases and recall 
higher than 75%. Such performance can be recognized as satisfactory 
reliable. In terms of Fig. 7(d), whose landslides are solely distributed in 
the main background of vegetation, which can be recognized as an easy 
case, our proposed method provides a promising performance with its 
precision reaching 94.04%. 

The evaluation statistics of sub regions (listed in Table 3) are all 
higher than the statistics in national scale of Nepal (listed in Table 2), 
because the background objects in the sub images are comparatively 
simple. The sub images are subtracted with regions covering landslides 
and limited bare soil, while national scale Nepal covers many areas with 
disturbing bare soil but without landslides. However, there is still some 
bare soil mis-classified as landslides in the sub images. It indicates that 

Fig. 3. Potential landslide detection result of Nepal in year of 2015 based on vegetation index: (a) potential landslides detected; (b) and (c): sample sub areas 
indicating the great number of bare soil, rock pixels mixed with landslide pixels. 

Fig. 4. Demonstration of bounding box extension.  

Fig. 5. Deep learning framework of landslide detection.  
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the capability of our framework in detecting landslide from complicated 
background needs further enhancement, especially in distinguishing 
between landslides and bare soil. That may be dealt with by adding more 
landslide samples and conducting change detection to decrease the 
impact of bare soil in the future work. 

There is another point that our recall and precision, specifically in 
national scale, are not that high as calculated in other published works 
(Cheng et al., 2013; Li et al., 2016; Valkaniotis et al., 2018), because the 
variability of the ground objects in our case is far more complicated with 
intensive bare soil and rocks in the mountainous regions, and the 
number of landslide events in our study area (being more than 6000) is 
much larger than that in other published works (Valkaniotis et al., 2018) 
(being hundreds or approximate 1000) as well. The difficulties in 
landslide detection in our case are more challenging, especially for 
large-scale practical applications. Moreover, through the proposed 

landslide detecting framework, the performances in our case are twice 
better than the recently published work in (Chen et al., 2018), which 
also detects landslides from national scale of Nepal, but bases on random 
forest classifier. That further validates the novelty and the promising 
applicability of our framework in detecting landslides from national or 
even continental area. 

5. Conclusions 

In this paper, a contour-based landslide detection model is proposed. 
It consists of two parts, one is potential landslide detection based on 
vegetation index and degradation of DEM, the other is exact landslide 
detection based on an end-to-end contour-based semantic segmentation 
deep learning model. The contour is extracted according to the bounding 
box of connective contour from the potential landslide image and 
extended its spatial scale according to its area. Compared with the 
contour-based landslide detection machine learning model in (Chen 
et al., 2018), we simplified the process of potential landslide detection 
by replacing the image saliency calculation with a simple and robust 
experienced threshold. In terms of box area subtraction, bounding box 
was not only used in this study, but also extended to cover more land-
slides to enlarge the training set and variability. Moreover, feature en-
gineering is avoided in our proposed landslide detection framework by 
applying deep learning framework. Therefore, this study can be recog-
nized as an improved version of the model in (Chen et al., 2018). Our 

Fig. 6. Landslide detection performance in Nepal by our proposed method: (a) detection result; (b) ground truth landslide.  

Table 2 
Comparison of evaluation statistics of landslide detection between our proposed 
framework and the published result (Chen et al., 2018) in terms of national scale 
of Nepal.  

Recall (%) Precision (%) F1-score 

65.01 55.35 0.60 
22.89 (Chen et al., 2018) 29.72 (Chen et al., 2018) 0.26  
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method is applied to detect landslides of Nepal in the year of 2015 based 
on the annual synthesized Landsat image generated from google earth 
engine platform. The results demonstrate the effectiveness and robust-
ness of the proposed framework and its strong practical applicability in 
national scale cases with 65% recall and 55.35% precision. 

Computer code availability 

The implementation source code can be referred to https://github. 
com/yubozuzu123/Landslide-detection-model_pspnet/tree/master. 

Fig. 7. Landslide detection performance of four sub regions by our proposed method: (a)-1, (b)-1, (c)-1, (d)-1: original image in false color combination; (a)-2, (b)-2, 
(c)-2, (d)-2: detection results by proposed framework; (a)-3, (b)-3, (c)-3, (d)-3: ground truth landslides of the corresponding sub regions. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 

Table 3 
Evaluation statistics of landslide detection by our proposed framework in terms 
of four randomly subtracted images.  

Figure Recall (%) Precision (%) F1-score 

Fig. 7(a) 75.71 66.66 0.71 
Fig. 7(b) 90.83 64.88 0.76 
Fig. 7(c) 84.91 81.53 0.83 
Fig. 7(d) 83.28 94.04 0.88  
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